Common Sole Larvae Survive High Levels of Pile-Driving Sound in Controlled Exposure Experiments
نویسندگان
چکیده
In view of the rapid extension of offshore wind farms, there is an urgent need to improve our knowledge on possible adverse effects of underwater sound generated by pile-driving. Mortality and injuries have been observed in fish exposed to loud impulse sounds, but knowledge on the sound levels at which (sub-)lethal effects occur is limited for juvenile and adult fish, and virtually non-existent for fish eggs and larvae. A device was developed in which fish larvae can be exposed to underwater sound. It consists of a rigid-walled cylindrical chamber driven by an electro-dynamical sound projector. Samples of up to 100 larvae can be exposed simultaneously to a homogeneously distributed sound pressure and particle velocity field. Recorded pile-driving sounds could be reproduced accurately in the frequency range between 50 and 1000 Hz, at zero to peak pressure levels up to 210 dB re 1µPa(2) (zero to peak pressures up to 32 kPa) and single pulse sound exposure levels up to 186 dB re 1µPa(2)s. The device was used to examine lethal effects of sound exposure in common sole (Solea solea) larvae. Different developmental stages were exposed to various levels and durations of pile-driving sound. The highest cumulative sound exposure level applied was 206 dB re 1µPa(2)s, which corresponds to 100 strikes at a distance of 100 m from a typical North Sea pile-driving site. The results showed no statistically significant differences in mortality between exposure and control groups at sound exposure levels which were well above the US interim criteria for non-auditory tissue damage in fish. Although our findings cannot be extrapolated to fish larvae in general, as interspecific differences in vulnerability to sound exposure may occur, they do indicate that previous assumptions and criteria may need to be revised.
منابع مشابه
In Situ Mortality Experiments with Juvenile Sea Bass (Dicentrarchus labrax) in Relation to Impulsive Sound Levels Caused by Pile Driving of Windmill Foundations
Impact assessments of offshore wind farm installations and operations on the marine fauna are performed in many countries. Yet, only limited quantitative data on the physiological impact of impulsive sounds on (juvenile) fishes during pile driving of offshore wind farm foundations are available. Our current knowledge on fish injury and mortality due to pile driving is mainly based on laboratory...
متن کاملRecovery of Barotrauma Injuries in Chinook Salmon, Oncorhynchus tshawytscha from Exposure to Pile Driving Sound
Juvenile Chinook salmon, Oncorhynchus tshawytscha, were exposed to simulated high intensity pile driving signals to evaluate their ability to recover from barotrauma injuries. Fish were exposed to one of two cumulative sound exposure levels for 960 pile strikes (217 or 210 dB re 1 µPa(2)·s SEL(cum); single strike sound exposure levels of 187 or 180 dB re 1 µPa(2)⋅s SEL(ss) respectively). This w...
متن کاملEffects of Pile Driving on the Residency and Movement of Tagged Reef Fish
The potential effects of pile driving on fish populations and commercial fisheries have received significant attention given the prevalence of pile driving occurring in coastal habitats throughout the world. Behavioral impacts of sound generated from these activities on fish typically have a greater area of influence than physical injury, and may therefore adversely affect a greater portion of ...
متن کاملThreshold for Onset of Injury in Chinook Salmon from Exposure to Impulsive Pile Driving Sounds
The risk of effects to fishes and other aquatic life from impulsive sound produced by activities such as pile driving and seismic exploration is increasing throughout the world, particularly with the increased exploitation of oceans for energy production. At the same time, there are few data that provide insight into the effects of these sounds on fishes. The goal of this study was to provide q...
متن کاملRecovery of Barotrauma Injuries Resulting from Exposure to Pile Driving Sound in Two Sizes of Hybrid Striped Bass
The effects of loud sounds on fishes, such as those produced during impulsive pile driving, are an increasing concern in the management of aquatic ecosystems. However, very little is known about such effects. Accordingly, a High Intensity Controlled Impedance Fluid Filled wave Tube (HICI-FT) was used to investigate the effects of sounds produced by impulsive pile driving on two size groups of h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012